Comparison of the virulence of exopolysaccharide-producing Prevotella intermedia to exopolysaccharide non-producing periodontopathic organisms
نویسندگان
چکیده
BACKGROUND Evidence in the literature suggests that exopolysaccharides (EPS) produced by bacterial cells are essential for the expression of virulence in these organisms. Secreted EPSs form the framework in which microbial biofilms are built. METHODS This study evaluates the role of EPS in Prevotella intermedia for the expression of virulence. This evaluation was accomplished by comparing EPS-producing P. intermedia strains 17 and OD1-16 with non-producing P. intermedia ATCC 25611 and Porphyromonas gingivalis strains ATCC 33277, 381 and W83 for their ability to induce abscess formation in mice and evade phagocytosis. RESULTS EPS-producing P. intermedia strains 17 and OD1-16 induced highly noticeable abscess lesions in mice at 107 colony-forming units (CFU). In comparison, P. intermedia ATCC 25611 and P. gingivalis ATCC 33277, 381 and W83, which all lacked the ability to produce viscous materials, required 100-fold more bacteria (109 CFU) in order to induce detectable abscess lesions in mice. Regarding antiphagocytic activity, P. intermedia strains 17 and OD1-16 were rarely internalized by human polymorphonuclear leukocytes, but other strains were readily engulfed and detected in the phagosomes of these phagocytes. CONCLUSIONS These results demonstrate that the production of EPS by P. intermedia strains 17 and OD1-16 could contribute to the pathogenicity of this organism by conferring their ability to evade the host's innate defence response.
منابع مشابه
Complete Genome Sequence of Prevotella intermedia Strain 17-2
Prevotella intermedia, a Gram-negative black-pigmented anaerobic rod, is frequently isolated from not only periodontal pockets but also purulent infections. We report here the complete genome sequence of P. intermedia strain 17-2, which is a non-exopolysaccharide-producing variant obtained from exopolysaccharide (EPS)-producing P. intermedia strain 17 stock culture.
متن کاملLead and Cadmium Bioremoval by Halomonas sp., an Exopolysaccharide-Producing Halophilic Bacterium
Toxic heavy metals, such as lead (Pb) and cadmium (Cd) are widely used in industry and their accumulation in the living tissues may cause serious health problems and ecological hazards. Twenty four moderately halophilic bacteria isolated from saline environments of Iran were used to study their ability to bioremediation of lead and cadmium. Amongst them, a Gram-negative rod shaped bacterium, de...
متن کاملReutericyclin producing Lactobacillus reuteri modulates development of fecal microbiota in weanling pigs
Lactobacillus reuteri is used as probiotic culture in food and feed applications; however, strain specific properties of L. reuteri that mediate probiotic activity remain unknown. This study aimed to determine effects of feed fermentation with exopolysaccharide and reutericyclin producing L. reuteri on the transition of the gut microbiome of piglets after weaning. The reutericyclin and reuteran...
متن کاملInfluence of capsular and ropy exopolysaccharide-producing Streptococcus thermophilus on Mozzarella cheese and cheese whey.
We investigated the effect of capsular and ropy exopolysaccharide-producing Streptococcus thermophilus starter bacteria on Mozzarella cheese functionality and whey viscosity. Mozzarella cheeses were manufactured with Lactobacillus helveticus LH100 paired with one of four S. thermophilus strains: MR-1C, a bacterium that produces a capsular exopolysaccharide; MTC360, a strain that secretes a ropy...
متن کاملMicrostructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides.
Yogurt was made using an exopolysaccharide-producing strain of Streptococcus thermophilus and its genetic variant that only differed from the mother strain in its inability to produce exopolysaccharides. The microstructure was investigated using confocal scanning laser microscopy, allowing observation of fully hydrated yogurt and the distribution of exopolysaccharide within the protein network....
متن کامل